تالارها ثبت نام نظرسنجی جستجو موقعیت قوانین آخرین ارسالها   چت روم
علم و دانش

پرو‍ژه

صفحه  صفحه 8 از 11:  « پیشین  1  2  3  4  5  6  7  8  9  10  11  پسین »  
#71 | Posted: 12 Dec 2011 18:08
کوپلیمریزاسیون

کوپلیمریزاسیون عبارتست از پلیمریزاسیون دو یا چند نوع مونومر و ایجاد مولکولهایی با بیش از یک نوع واحد ساختمانی ، که آنها را کوپلیمر می‌نامند. فرمول عمومی کوپلیمر را می‌توان به صورت...A)n(B)m(C)p) نشان داد که C,B,A و غیره نشان دهنده واحدهای ساختمانی مختلف می‌باشند.

کوپلیمریزاسیون

هموپلیمرها (homopolymers)
ساده ترین انواع پلیمرها ، هموپلیمرها هستند که از زنجیره های پلیمری متشکل از واحدهای تکراری منفرد تشکیل شده‌اند. بدین معنی که اگر A یک واحد تکراری باشد، یک زنجیره هموپلیمری ، ترتیبی به صورت… AAAدر زنجیره مولکولی پلیمر خواهد داشت. به عبارت دیگر می توان برای هموپلیمرها فرمول عمومی An را در نظر گرفت. از جمله هموپلیمرها می توان پلیمرهایی مثل پلی‌اتیلن ، پلی‌پروپیلن ، پلی‌استایرن و پلی‌وینیل‌کلراید یا PVC را نام برد.

img/daneshnameh_up/6/69/copolymer1_h.jpg

کوپلیمرها (Coplymers)
کوپلیمرها، پلیمرهایی هستند که از پلیمریزاسیون دو یا چند مونومر مختلف و مناسب با یکدیگر بوجود می‌آیند که از این راه می توان پلیمر را با ساختمانهای متفاوتی بوجود آورد. در کوپلیمریزاسیون دو مونومر B,A ، زنجیرهای پلیمر می‌توانند مونومر A یا مونومر B را در انتهای رشد کننده خود داشته باشند. در نتیجه ، چهار واکنش امکان پذیر است، واکنش زنجیر دارای انتهای A با مونومر A یا B و واکنش زنجیر دارای انتهای B با مونومر A یا B هر یک از واکنش ها ثابت سرعت مشخصی دارند. از روی نسبت داده شده مولکولهای مونومر می‌توان نسبت واحدهای مونومرهای بکار رفته در یک پلیمر را بدست آورد.
نسبت واکنش پذیری
مقدار نسبت های واکنش پذیری در تعیین ترکیب کوپلیمر دارای اهمیت زیادی است. اگر نسبت واکنش پذیری از 1 بزرگتر باشد، رادیکال ترجیحا با زنجیری که دارای واحد انتهایی مشابه با آن است، واکنش می‌دهد (یعنی رادیکال A با رادیکال A). ولی اگر نسبت واکنش پذیری کوچکتر از 1 باشد، مونومر با زنجیرهایی که در انتها دارای نوع دیگری مونومر هستند واکنش می‌دهد. در موارد خاص که نسبت واکنش پذیری برابر 1 باشد، واکنش به عنوان "کوپلیمریزاسیون ایده آل" شناخته می‌شود، چون کوپلیمر به صورت کاملا تصادفی تشکیل شده و ترکیب آن هماننتد ترکیب مخلوط واکنشی است که پلیمریزاسیون در آن انجام می‌شود. هنگامی که به دو نسبت واکنش پذیری ، صفر باشد، مونومرها به هیچ وجه با زنجیرهای پلیمر در حال رشد که دارای واحد انتهایی مشابه آنها باشد، وارد واکنش نمی‌شوند. در نتیجه "کوپلیمریزاسیون متناوب" انجام می‌گیرد.
خواص کوپلیمرها
اگر مونومرهای B و A با هم واکنش بدهند و یک کوپلیمر را بوجود بیاورند این کوپلیمر اغلب خواص کاملا متفاوتی نسبت به مخلوط فیزیکی دو هموپلیمر جداگانه B و A خواهد داشت. خواص یک کوپلیمر به روشنی بستگی به نحوه توزیع واحدهای B و A در زنجیرهای کوپلیمر دارد. توزیع مونومرها نباید الزاما برابر نسبت غلظت مونومرهای B,A موجود مخلوط اولیه باشد. بطور کلی در یک کوپلیمر متشکل از مونومر B و A ، در صورتیکه مونومر A فعالتر باشد کوپلیمری که در مراحل اولیه تشکیل می شود از A نسبت به B غنی‌تر خواهد بود ولی در مراحل بعدی واکنش از آنجا که غلظت مونومر A کم می‌شود کوپلیمر تشکیل شده بیشتر شامل B خواهد بود. این مسئله که ترکیب کوپلیمر در ضمن پلیمریزاسیون تغییر پیدا می‌کند را می‌توان با افزایش تدریجی مونومر فعالتر تا حدودی کاهش داد. از مزیت های کوپلیمریزاسیون این است که کیفیتهای خوب و دلخواهی که هر یک از هموپلیمرها دارند می توانند با هم در یک کوپلیمر جمع شده و خواص مورد دلخواه را به یک کوپلیمر بدهند.
انواع کوپلیمریزاسیون
کوپلیمرها انواع مختلفی دارند و لیکن می توان آنها را به چهار نوع مجزا از کوپلیمرها به صورت تصادفی ، تناوبی ، دسته ای و پیوندی دسته بندی نمود.
کوپلیمرهای تصادفی یابی نظم (Random Copolymers)
این کوپلیمرها بوسیله پلیمریزاسیون مخلوط مناسبی از مونومرهای مختلف که به طور تصادفی در زنجیره های پلیمر مرتب شده اند، تهیه می‌شوند. اگر B و A مونومرهای یک کوپلیمر باشند، در اینصورت آرایش کوپلیمر ممکن است به صورت زیر باشد: ...AABABBBAA
مثالهایی از این نوع ، کوپلیمرهای کلرواتن- اتنیل- اتانوات (وینیل کلراید- وینیل استات) و فنیل اتن- بوتا 1و3 - دین می‌باشند. در مورد کوپلیمر کلرواتن – اتنیل اتانوات حضور اتینل اتانوال باعث افزایش حلالیت و بهبود خاصیت قابلگیری (توسط افزایش میزان جاری شدن) در مقایسه با هموپلیمر کلرواتن می‌شود.
کوپلیمرهای متناوب (alternating copolymers)
در این کوپلیمرها ، واحدهای تکراری مختلف بصورت متناوب درون زنجیر پلیمری قرار گرفته اند. در واقع هنگامی که نسبت واکنش پذیری دومونومر B و A صفر باشد، مونومرها به هیچ وجه با زنجیرهای پلیمر در حال رشد که دارای واحد انتهایی مشابه با آنها باشد، وارد واکنش نمی‌شوند. در نتیجه "کوپلیمریزاسیون متناوب" انجام می گیرد. آرایش یک کوپلیمر متناوب متشکل از مونومرهای B,A به صورت زیر می باشد: ...ABABAB
مثالی از این کوپلیمرها ، محصولی است که از کوپلیمریزاسیون رادیکالی بوتن دیوئیک انیدرید (مالئیک ایندرید) و فنیل اتن با نسبت های مولی تقریبا مساوی بدست می آید. بوتن دیوئیک انیدرید همچنین می‌تواند بصورت رادیکال آزاد با فنیل اتین (فنیل استیلن) کوپلیمر شود.
img/daneshnameh_up/f/fe/BlockCopolymerStructure.jpg

کوپلیمرهای دسته‌ای (Block Polymers)
این کوپلیمرها بوسیله پلیمریزاسیون واحدهای هموپلیمر با جرم مولکولی کم بصورت دسته- دسته که با یکدیگر واکنش داده و کوپلیمر را تشکیل می دهند، تهیه می‌شوند. آرایش یک کوپلیمر دسته‌ای متشکل از مونومرهای B و A عبارتست از AAAA-BBB-AAAA….
کوپلیمرهای دسته ای را می‌توان با روشهای مختلفی تهیه کرد. یکی از این روشها با مکانیسم آنیونی انجام می‌شود که در مرحله اول یک نوع از مونومرها بصورت آنیونی پلیمر می‌شوند و واکنش تا آنجا ادامه پیدا می کند که مونومرها به مصرف برسند پس به پلیمر زنده بدست آمده مونومر دیگر اضافه می‌شود که این مونومر نیز به زنجیر اضافه می‌گردد و قسمت دوم زنجیر را بوجود می‌آورد و این فرآیند را می‌توان در صورت لزوم به همیتن ترتیب تکرار کرد. کوپلیمرهای دسته‌ای که از نظر تجارتی دارای اهمیت هستند شامل کوپلیمرهای قسمتی فنیل اتن- بوتا- 1و3- دین می‌باشند که از جمله لاستیک های گرمانرم بشمار می‌روند.
کوپلیمرهای پیوندی (Graft Copolymers)
در این کوپلیمرها ، یک شاخه اصلی هموپلیمر با تعدادی شاخه جانبی وجود دارد که هر شاخه جانبی ، هموپلیمر مونومر دیگری می باشد که روی شاخه اصلی پیوند زده شده است. آرایش یک کوپلیمر پیوندی شامل مونومرهای A بعنوان شاخه اصلی و مونومرهای B بعنوان شاخه فرعی بصورت زیر می‌باشد:
AAAAAA

B B

B B

کوپلیمرهای پیوندی را می‌توان با آغاز کردن پلیمریزاسیون مونومری مانند B بصورت رادیکال آزاد در حضور هموپلیمری از مونومر A تهیه کرد. رادیکالهای آزادی که بوجود می آیند باعث برداشته شدنم اتمهایی در امتداد زنجیر پلی (A) می‌شوند. و به این طریق محلهای رادیکالی را بر روی زنجیر بوجود می‌آورند که پس از این محل‌ها پلی (B) می‌تواند رشد پیدا کند. نمونه ای از یک کوپلیمر مهم صنعتی ، کوپلیمری است که از حدود 85 درصد کلرید پلی وینیل و 15 درصد استات پلی وینیل تشکیل شده است و به عنوان ماده پایه در اکثر ثباتهای وینیلی بکار می‌رود. از دیگر کوپلیمرهای پیوندی که از اهمیت صنعتی برخوردارند می‌توان پروپن نیتریل بوتا- 1و3 – دین و فنیل اتن را نام برد.

ویرایش و تلخیص:آکاایران
     
#72 | Posted: 12 Dec 2011 18:09
قطیر جزء به جزء

نگاه کلی
روشهای مختلفی برای جداسازی مواد اجزای سازنده یک محلول وجود دارد که یکی از این روشها فرایند تقطیر می‌باشد در روش تقطیر جداکردن اجزاء یک مخلوط ، از روی اختلاف نقطه جوش آنها انجام می‌گیرد. تقطیر در عمل به دو روش زیر انجام می‌گیرد. روش اول شامل تولید بخار از طریق جوشاندن یک مخلوط مایع ، سپس میعان بخار ، بدون اینکه هیچ مایعی مجددا به محفظه تقطیر بازگردد. در نتیجه هیچ مایع برگشتی وجود ندارد. در روش دوم قسمتی از بخار مایع شده به دستگاه تقطیر باز می‌گردد و به صورتی که این مایع برگشتی در مجاورت بخاری که به طرف مبرد می‌رود قرار می‌گیرد. هر کدام از این روشها می‌توانند پیوسته یا ناپیوسته باشند.

تقطیر جزء به جزء

انواع تقطیر

تقطیر ساده غیر مداوم : در این روش تقطیر ، مخلوط حرارت داده می‌شود تا بحال جوش درآید بخارهایی که تشکیل می‌شود غنی از جزء سبک مخلوط می‌باشد پس از عبور از کندانسورها (میعان کننده ها) تبدیل به مایع شده ، از سیستم تقطیر خارج می‌گردد. به تدریج که غلظت جزء سنگین مخلوط در مایع باقی مانده زیاد می‌شود، نقطه جوش آن بتدریج بالا می‌رود. به این ترتیب ، هر لحظه از عمل تقطیر ، ترکیب فاز بخار حاصل و مایع باقی مانده تغییر می‌کند.
تقطیر ساده مداوم : در این روش ، مخلوط اولیه (خوراک دستگاه) بطور مداوم با مقدار ثابت در واحد زمان ، در گرم کننده گرم می‌شود تا مقداری از آن بصورت بخار درآید، و به محض ورود در ستون تقطیر ، جزء سبک مخلوط بخار از جزء سنگین جدا می شود و از بالای ستون تقطیر خارج می‌گردد و بعد از عبور از کندانسورها ، به صورت مایع در می‌آید جزء سنگین نیز از ته ستون تقطیر خارج می‌شود. قابل ذکر است که همیشه جزء سبک مقداری جزء سنگین و جزء سنگین نیز دارای مقداری از جزء سبک است.
تقطیر تبخیر آنی (ناگهانی) : وقتی محلول چند جزئی مانند نفت خام را حرارت می‌دهیم، اجزای تشکیل دهنده آن بترتیب که سبکتر هستند، زودتر بخار می‌شود. برعکس وقتی بخواهیم این بخارها را سرد و دوباره تبدیل به مایع کنیم، هر کدام که سبکتر باشد دیرتر مایع می‌گردد. با توجه به این خاصیت ، می‌توانیم نفت خام را به روش دیگری که به آن "تقطیر آنی" گویند، تقطیر نماییم. در این روش ، نفت خام را چنان حرارت می‌دهیم که ناگهان همه اجزای آن تبدیل به بخار گردد و سپس آنها را سرد می‌کنیم تا مایع شود. در اینجا ، بخارها به ترتیب سنگینی ، مایع می‌شوند یعنی هرچه سنگین‌تر باشند، زودتر مایع می‌گردند و بدین گونه ، اجزای نفت خام را با ترتیب مایع شدن از هم جدا می‌کنیم.
تقطیر در خلا : با توجه به اینکه نقطه جوش مواد سنگین نفتی نسبتا بالاست و نیاز به دما و انرژی بیشتری دارد، و از طرف دیگر ، مقاومت این مواد در مقابل حرارت بالا کمتر می‌باشد و زودتر تجزیه می‌گردند، لذا برای جداکردن آنها از خلا نسبی استفاده می‌شود. در این صورت مواد دمای پایین‌تر از نقطه جوش معمولی خود به جوش می‌آیند. در نتیجه ، تقطیر در خلا ، دو فایده دارد: اول این که به انرژی و دمای کمتر نیاز است، دوم اینکه مولکولها تجزیه نمی‌شوند. امروزه در بیشتر موارد در عمل تقطیر ، از خلا استفاده می‌شود. یعنی این که: هم تقطیر جزء به جزء و هم تقطیر آنی را در خلا انجام می‌دهند.
تقطیر به کمک بخار آب : یکی دیگر از طرق تقطیر آن است که بخار آب را در دستگاه تقطیر وارد می‌کنند در این صورت بی آنکه خلاء‌ای ایجاد گردد، اجزای نفت خام در درجه حرارت کمتری تبخیر می‌شوند. این مورد معمولا در زمانی انجام می‌شود که در نقطه جوش آب ، فشار بخار اجزای جدا شونده بالا باشد تا به همراه بخار آب از مخلوط جدا گردند.
تقطیر آزئوتروپی : از این روش تقطیر معمولا در مواردی که نقطه جوش اجزاء مخلوط بهم نزدیک باشند استفاده می‌شود، جداسازی مخلوط اولیه ، با افزایش یک حلال خاص که با یکی از اجزای کلیدی ، آزئوتوپ تشکیل می‌دهد امکان‌پذیر است. آزئوتروپ محصول تقطیر یا ته مانده را از ستون تشکیل می‌دهد و بعد حلال و جزء کلیدی را از هم جدا می‌کند. اغلب ، ماده افزوده شده آزئوتروپی با نقطه جوش پایین تشکیل می‌دهد که به آن شکننده آزئوتروپ می‌گویند. آزئوتروپ اغلب شامل اجزای خوراک است، اما نسبت اجزای کلیدی به سایر اجزای خوراک خیلی متفاوت بوده و بیشتر است.

مثالی از تقطیر آزئوتروپی استفاده از بنزن برای جداسازی کامل اتانول از آب است، که آزئوتروپی با نقطه جوش پایین با 6/95% وزنی الکل را تشکیل می‌دهد. مخلوط آب- الکل با 95% وزنی الکل به ستون تقطیر آزئوتروپی افزوده می‌شود و جریان جریان غنی از بنزن از قسمت فوقانی وارد می‌شود. محصول ته مانده الکل تقریبا خالص است وبخار بالایی یک آزئوتروپی سه‌گانه است. این بخار مایع شده، به دو فاز تقسیم می‌شود. لایه آلی برگشت داده شده، لایه آلی به ستون بازیافت بنزن فرستاده می‌شود. همه بنزن و مقدار الکل در بخار بالایی گرفته شده، به ستون اول روانه می‌شوند. جریان انتهایی در ستون سوم تقطیر می‌شود تا آب خالص و مقداری آزئوتروپ دوگانه از آن بدست آید.

تقطیر استخراجی : جداسازی اجزای با نقطه جوش تقریبا یکسان از طریق تقطیر ساده مشکل است حتی اگر مخلوط ایده آل باشد و به دلیل تشکیل آزئوتروپ ، جداسازی کامل آنها غیر ممکن است برای چنین سیستم هایی با افزایش یک جزء سوم به مخلوط که باعث تغییر فراریت نسبی ترکیبات اولیه می‌شود، جداسازی ممکن می‌شود. جزء افزوده شده باید مایعی با نقطه جوش بالا باشد، قابلیت حل شدن در هر دو جزء کلیدی را داشته باشد و از لحاظ شیمیایی به یکی از آنها شبیه باشد. جزء کلیدی که به حلال بیشتر شبیه است ضریب فعالیت پایین تری از جزء دیگر محلول دارد، در نتیجه جداسازی بهبود می یابد این فرآیند ، تقطیر استخراجی نام دارد.

مثالی از تقطیر استخراجی، استفاده از فور فورال در جداسازی بوتادی‌ان و بوتن است، فورفورال که حلالی به شدت قطبی است، فعالیت بوتادی ان را بیش تر از بوتن و بوتان کم می‌کند و غلظت بوتادی ان وفورفورال وارد قسمت فوقانی ستون تقطیر استخراجی شود، با انجام تقطیر بوتادی ان از فورفورال جدا می‌شود.

تقطیر جزء به جزء : اجزای سازنده محلول شامل دو یاچند فرار را که از قانون رائول پیروی می‌کنند، می‌توان با فرایند تقطیر جزء به جزء از هم جدا کرد. طبق قانون رائول ، فشار بخار محلول برابر با مجموع اجزای سازنده آن است و سهم هر جزء برابر با حاصلضرب کسر مولی آن جزء به جزء در فشار بخار آن در حالت خاص است. در تقطیر محلولی از B و A ، غلظت A در بخاری که خارج شده و مایع می‌شود، بیش از غلظت آن در مایع باقی مانده است. با ادامه عمل تقطیر ، ترکیب درصد اجزا در بخار و مایع دائما تغییر می‌کند و این در هر نقطه عمومیت دارد. با جمع آوری مایعی که از سردشدن بخار حاصل می‌شود و از تقطیر مجدد آن و با تکراری پی در پی این عمل ، سرانجام می‌توان اجزای سازنده مخلوط اصلی را به صورتی واقعا خالص بدست آورد.


تصویر

فرایند تقطیر جزء به جزء
تقطیر جزء به جزء در ستون تقطیر سینی دار و یا پر شده انجام می‌گیرد، به این ترتیب که بخارات حاصل شده، از پایین به طرف بالای ستون حرکت می‌کند و با فاز مایعی که از میعان بخارات قبلی که در طول ستون تولید شده اند و به طرف پایین جریان دارند، در تماس می‌باشد و به این صورت تماس کامل بین فاز گاز و مایع برقرار می‌شود. درجه حرارت هر سینی پایینی خود کمتر است، و در ستون تقطیر ، دما از پایین به بالا ، کم می‌گردد. بخارهایی که نقطه میعان آنها ، مساوی درجه حرارت سینی باشد، و روی آن سینی به مایع تبدیل می‌شود و روی آن جمع می‌گردد و به روی سینی پایینی می‌ریزد. در نتیجه این عمل فاز بخار ، که غنی از جزء سبک است، از بالای ستون خارج می‌شود و فاز مایع که غنی از جزء سنگین از پایین جمع آوری می‌گردد. بخارهای خارج شده از قسمت بالای ستون در کندانسورها به مایع تبدیل شده، به عنوان محصول جمع آوری می‌گردد معمولا مقداری از این مایع جمع آوری شده جهت کنترل دمای ستون تقطیر به عنوان مایع برگشتی به داخل آن برمی‌گردد. قسمت بالای ستون تقطیر تا سینی که خوراک روی آن می‌ریزد به نام منطقه" تفکیک ستون" گویند و قسمت پایین ستون مربوط به خوراک را منطقه "عریان کننده" می‌نامند.
تقطیر جزء به جزء مخلوطهای دو جزئی و چند جزئی
هدف از تقطیر ، جداسازی خوراک به بخارهایی از محصولات تقریبا خالص است در تقطیر سیستم های دو جزئی ، درجه خلوص با کسر مولی جزء سبک در محصول تقطیر XO و در محصول ته مانده XB بیان می‌شود. در سیستم های دو جزئی از یک مرحله به مرحله دیگر ، به جزء در نقطه آزئوتروپ ، دما و منحنی تعادل تغییر می‌کنند و یک جزء در تمام ستون فرارتر است. اما در سیستم های چند جزئی یک جزء ممکن است در یک قسمت ستون فرارتر و در قسمت دیگر فراریت کمتری داشته باشد، که ماهیت پیچیده غلظت اجزا را نشان می‌دهد. تعادل فازی سیستم های چند جزئی نسبت به دو جزئی بسیار پیچیده است، به دلیل اینکه تعداد اجزاء زیاد است وتعادل به دما بستگی دارد و دما از یک مرحله به مرحله دیگر تغییر می‌کند.

ویرایش و تلخیص:آکاایران
     
#73 | Posted: 12 Dec 2011 18:09
شناسایی رادیکالها

تعریف کلی
در ساده ترین تعریف می‌توان چنینی اظهار نمود که رادیکال آزاد، هر یک از مولکولها و اتمهایی است که دارای یک الکترون جفت نشده باشند. . ولی باید توجه داشت که مولکولهایی مانند اکسید نیتریک و اکسیژن نیز از این قاعده پیروی می‌کنند، لکن بصورت عادی نمی‌توانند از باب رادیکالهای آزاد مطرح باشند بنابراین این اصطلاح (یعنی رادیکال آزاد) شامل مولکولهای عادی پایدار نمی‌شود.

شناسایی رادیکالها

نگاه کلی
از جمله رادیکالهای آزاد ساده می‌توان به CH3 ,CN ,OH ,Cl ,H اشاره کرد. چنین رادیکالهایی از اهمیت فوق العاده‌ای در واکنشهای گرمایی و فتوشیمیایی، پلیمریزاسیون و احتراق برخوردارند. آنها در هر دو فاز مایع و گازی دارای اهمیت می‌باشند، لکن به هر حال دستگاههای فاز گازی بسیار ساده تر بوده و تفسیر قاطعانه‌تری را اجازه می‌دهند. با وجود این حتی در فاز گازی، روشهای تجربی بناچار پیچیده و غیر مستقیم هستند، زیرا موادی با چنین طول عمر کوتاه (معمولا کمتر از 3- 10 ثانیه) را نمی‌توان در غلظتهای زیاد تهیه کرد. بنابراین چنین عواملی، امکان تهیه، ارزیابی و شناسایی رادیکالها را با اشکالات بسیار زیاد مواجه می‌سازد. لکن، وجود زودگذر چنین اتمها و رادیکالهایی توسط مطالعات اسپکتروسکوپی و یا روشهای شیمیایی ثابت شده است.
روشهای شناسایی رادیکالها
اولین روشهای شناسایی رادیکالها، مستلزم در نظر گرفتن خواص شیمیایی آنها بوده است. بعدها از روش های مطمئن تری مانند طیف سنجی جذبی و طیف سنجی جرمی استفاده شد.
روشهای شیمیایی

ازاله آئینه (mirror removal method):


اولین روشی که در مورد رادیکال متیل بوسیله پانت " Paneth " مورد استفاده قرار گرفته، روشی تحت عنوان ازاله آئینه "mirror removal method" بوده است.

در این روش، ابتدا رادیکالها بوسیله تجزیه گرمایی در یک سیستم جریان بسیار سریع با استفاده از یک گاز حامل بی‌اثر، تهیه می‌شوند. سپس جریان حاصله از رادیکالها، همراه با آن گاز حامل توسط وسیله‌ای (بعنوان مثال یک لوله) از روی آئینه نازکی که در روی دیواره آن سرب بصورت لایه‌ای ریخته شده است، عبور داده می‌شود. در این حال در اثر حضور رادیکالها، خاصیت آئینه سربی از میان برداشته می‌شود که بصورت قطعی ثابت شده است که در اثر تشکیلPb(CH3)4 و محققا در اثر واکنش رادیکالهای CH3 با سرب صورت پذیرفته است. بدین روش بسیاری از رادیکالها مورد شناسایی قرار گرفته‌اند اما با توجه به اشتباهات مشاهده شده، این روش در حد وسیعی متوقف شده است.

گیراندازی رادیکالها:


روش شیمیایی دیگری که برای شناسایی رادیکالها وجود دارد تحت عنوان " گیراندازی رادیکالها " موسوم است.

در این روش به یک سیستم فتوشیمیایی، ید افزوده می‌شود و در نتیجه واکنش های سریع زیر رخ می‌دهد:

R. + I2 <------> RI + .I

R. + .I <-----> RI

در این حال تحت شرایط مناسب، امکان برداشتن کلیه رادیکالهای موجود به توسط آن سیستم و به دام اندازی آنها بصورت یدیدها وجود دارد. ثابت شده است که این روش در پیوستگی با سایر اطلاعاتیکه امکان تهیه آنها وجود دارد بسیار سودمند است، لکن باید توجه داشت که درصورت عدم احتیاطهای لازم، امکان اشتباهات وجود دارد.


تصویر

روش طیف‌بینی جذبی (absorption spectroscopy)
روش طیف‌بینی جذبی، روش ساده ای است که از آن در سالهای اخیر بصورت موفقیت آمیزی برای شناسایی اتم های آزاد استفاده شده است. اخیرا از این روش با موفقیت در زمینه شناسایی CN ,NH2 ,NH ,OH ,CF2 ,CF ,CH ,CHO ,CH3O ,C2 ,C3 ,NCO ,NCS ,CH3S ,HNO3 ,PH2 ,CH3 و بسیاری از رادیکالهای دیگر با درجات متفاوت از نظر اطمینان استفاده گردیده است.

با بوجود آمدن فتولیز درخشی "FLASH PHOTOLYSIS" که بتوسط آن، امکان دارد مقدار زیادی از انرژی یک گاز طی زمان کوتاهی جذب شود، پیشرفت بسیاری زیادی در زمینه شناسایی رادیکالها با استفاده از طیف بینی جذبی حاصل شد.
در یکی از انواع جالب توجه این روش، یک ترکیب آلی بلوری تحت دمای کم، با نور تجزیه شده و رادیکالهای تشکیل شده در یک ماتریس منجمد شده محبوس می‌شوند. در این حال، رادیکالها دارای طول عمر زیادی بوده و طیف اتمها براحتی قابل استفاده می‌باشند.

طیف‌سنجی جرمی (mass spectrometry)
قطعی‌ترین و دقیق‌ترین روش شناسایی و ارزیابی غلظت رادیکالها را در طیف‌سنجی جرمی باید جستجو کرد.
در این روش یک سیستم جریان سریع به صورتی مورد استفاده واقع می‌شود که طی آن رادیکالها به روش گرمایی یا فتوشیمیایی تهیه می‌شوند. سپس جریان گاز مورد نظر از درون سوراخ طیف سنج و یا اسپکترومتر جرم مورد عمل امتحان واقع می‌گردد. در این عمل یک انرژی الکترونی بصورتی مورد استفاده قرار می‌گیرد که رادیکالهای مورد نظر یونیزه شده، لکن مولکولهای پایدار تفکیک نشوند. هر یک از یونهای رادیکالی که در روش طیف سنج جرم تشخیص داده می‌شوند، می‌باید از رادیکالهایی که قبلا در گاز مورد نظر موجود بوده اند. تحصیل گردند و بدین روش شناسایی مستقیم و دقیق رادیکالها امکان پذیر می‌شود.

همچنین لازم به تذکر است که در شرایط مساعد، از این روش می‌توان به منظور ارزیابی کمی غلظت رادیکالها استفاده کرد.

در نهایت، در ارزیابی دقیق واکنشهای فتوشیمیایی، غالبا امکان برقراری مکانیزمی که مستلزم مجموعه ای از مراحل رادیکال آزاد، خارج از هر گونه ایهام منطقی باشد، میسر است.

بنابراین هنگامی که این موضوع امکان پذیر شود، ارزیابی وجود و غلظت رادیکالها با آن دقتی که از هر یک از روشهای ارزیابی مستقیم متصور است، انجام می‌پذیرد.

ویرایش و تلخیص:آکاایران
     
#74 | Posted: 12 Dec 2011 18:10
رادیکال آزاد

رادیکال آزاد، هر یک از اتمها و یا مولکولهایی است که دارای یک الکترون جفت نشده باشند. به عبارتی رادیکالها، مولکولها یا اتمهایی هستند که تمام والانس‌های آن سیر نشده و در واقع مولکولی اشباع نشده می‌باشد مثل رادیکال متیل (CH3.). رادیکالهای آزاد موجب فشارهای جزئی به میزان کمتر از6- 10 میلی‌متر جیوه شده و از طول عمر کوتاهی (معمولا کمتر از 3- 10 ثانیه) برخوردارند. وجود زودگذر چنین اتمها و رادیکالهایی توسط مطالعات اسپکتروسکوپی ثابت شده است.

رادیکال آزاد

دید کلی
هر چند که در ساده‌ ترین تعریف، رادیکال آزاد، هر یک از مولکولها و اتمهایی است که دارای یک الکترون جفت نشده باشند. ولی باید توجه داشت که مولکولهایی مانند اکسید نیتریک و اکسیژن نیز از این قاعده پیروی می‌کنند، لکن بصورت عادی نمی‌توانند از باب رادیکالهای آزاد مطرح باشند بنابراین این اصطلاح (یعنی رادیکال آزاد) شامل مولکولهای عادی پایدار نمی‌شود. از جمله رادیکالهای آزاد ساده می‌توان به CH3 ,CN ,OH ,Cl ,H اشاره کرد. چنینی رادیکالهایی از اهمیت فوق العاده‌ای در واکنشهای گرمایی و فتوشیمیایی، پلیمریزاسیون و احتراق برخوردارند. آنها در هر دو فاز مایع و گازی دارای اهمیت می‌باشند، لکن به هر حال دستگاههای فاز گازی بسیار ساده تر بوده و تفسیر قاطعانه‌تری را اجازه می‌دهند. با وجود این حتی در فاز گازی، روشهای تجربی بناچار پیچیده و غیر مستقیم هستند، زیرا موادی با چنین طول عمر کوتاه را نمی‌توان در غلظتهای زیاد تهیه کرد. بنابراین چنین عواملی، امکان تهیه، ارزیابی و شناسایی رادیکالها را با اشکالات بسیار زیاد مواجه می‌سازد.
تاریخچه
در طول قرن نوزده میلادی غالبا رادیکالهای آزاد بصورت ناصحیح بعنوان اصل مسلم در نظر گرفته می‌شده‌اند. فرضیه آووگادرو بوسیله شیمیدانان مواد آلی آن زمان بصورت جدی مورد توجه واقع نشده بود و موادی مانند C2H6 غالبا بصورت CH3 توصیف می‌گردید. با پایان یافتن قرن نوزده میلادی، این وضعیت مورد بررسی قرار گرفت و امکان موجودیت رادیکالهای آزاد، با کشف تری‌فنیل‌متیل‌رادیکال بوسیله گامبرگ "Moses Gomberg" به وضوح تایید شد. پس از این تاریخ بسیاری از رادیکالهای آزاد کشف و چنینی ترکیباتی در مکانیزمهای شیمی آلی بعنوان یک اصل پذیرفته شد.

تصویر

تشکیل رادیکال آزاد
بطور کلی، رادیکالهای آزاد بوسیله شکستگی یک پیوند در یک مولکول پایدار، با بوجود آمدن دو قطعه که هر یک از آنها حاوی یک الکترون جفت نشده است، تشکیل می‌شوند.
R1__R2 <------> R1. + .R2

باید توجه داشت که امکان دارد قطعات حاصله بطریقی تغییر شکل یابند و بویژه این تغییر شکل از ترکیب شدن مجدد آنها شود. در بسیاری از موارد، ترکیب شدن مجدد تقریبا در هر برخورد R1 و R2 با همنوع خود رخ می‌دهد و ترکیب مخلوط تعادلی تحت شرایط معمولی، دلالت بر تجزیه مقدار بسیار کمی از ترکیب به رادیکالها می‌نماید. همچنین بسیاری از روشهای دیگر نیز باستثنای ترکیب شدن مجدد مورد ملاحظه قرار گرفته است که با استفاده از آنها، رادیکالها تغییر شکل داده اند. رادیکالها از طول عمر کوتاهی (معمولا کمتر از 3- 10 ثانیه) برخوردارند و به همین دلیل آنها غالبا دارای اهمیت بسیار زیادی در علم سینتیک واکنش هستند.
روشهای تهیه رادیکال آزاد
روشهای متداول تهیه رادیکالهای آزاد را می‌توان به سه نوع گرمایی، الکتریکی و فتوشیمیایی تقسیم نمود:
روش گرمایی
در روشهای گرمایی، یک مولکول پایدار در درجه حرارت زیاد تجزیه می‌شود. باید توجه داشت که در شرایط استثنایی امکان دارد که در یک حالت تعادلی، تفکیک بسوی رادیکالها قابل ملاحظه باشد. بنابراین امکان دارد که اتمهای هیدروژن بوسیله حرارت دادن به هیدروژن در یک درجه حرارت بسیار زیادی تهیه شوند:
.H2 <----> 2H

بعنوان مثال در دمای 1900 k˚ این حالت تعادلی در فشار یک اتمسفر بسوی 1% تفکیک سوق داده می‌شود.
همچنین در چند مورد، تفکیک بسوی رادیکالها در دمای اطاق در موادی در محلول، مشاهده شده است. بدین ترتیب امکان تهیه رادیکالها، در غلظتهای زیاد و با طول عمر قابل ملاحظه وجود دارد. از جمله مواردی که می‌توان بدان اشاره کرد، هگزا فنیل‌اتان است که در محلول بنزن در 5 درجه سانتیگراد تا حد 3% به رادیکالهای تری‌فنیل‌متیل با غلظت 3-2% تفکیک شده و نیز هگزا- (پارا- بی- فنیلیل)-اتان است که واقعا در شرایط مشابه تا حد 100% تفکیک شده است.
به هر حال معمولا تجزیه های گرمایی برگشت ناپذیر می‌باشند. در این حال اکثر مواد آلی گازی تماما و یا قسمتی از آنها بوسیله مکانیزمی که طی آن، شکافتن مولکول بسوی رادیکالها با تشکیل دو رادیکال متیل آغاز می‌شود، تجزیه می‌گردند.
C2H6 <-------> 2 .CH3

روش الکتریکی
در روش الکتریکی رادیکالها را می‌توان از طریق عبور گاز مورد نظر از مکانی که یک تخلیه الکتریکی در سرعت زیاد در آن برقرار می‌شود، تهیه نمود. در این روش طیفهای اتمی تهیه می‌شوند و از این روش غالبا برای بررسی واکنشهای شیمیایی اتمهای هیدروژن، اکسیژن و نیتروژن استفاده می‌گردد.


تصویر
یک ترکیب دارای رادیکال

روش فتوشیمیایی
از جمله روشهایی که برای تهیه رادیکالهای آزاد بسیار عمومیت دارد، روشهای فتوشیمیایی است. تقریبا کلیه ترکیبات آلی گازی به روش فتوشیمیایی از مسیر رادیکالهای آزاد تجزیه می‌شوند و این روش از کاربرد گسترده‌ای برخوردار است. بدین روش، دو ماده کلر و استون در حد گسترده‌ای مورد استفاده واقع می‌شوند. کلر در تابش نور در ناحیه پیوسته طیف جذبی خود به اتمهای کلر تجزیه می‌شود.
cl2 + hv <------> 2.cl

بسیاری از واکنشهای اتمهای کلر بدین روش مورد بررسی قرار گرفته‌اند. همچنین فتولیز "photolysis" استون در حد گسترده‌ای مورد بررسی قرار گرفته است. در چنین واکنشی بدون هیچ گونه ابهامی ثابت شده است که شکافت اولیه با استفاده از تابش گستره 2537 تا 3130 آنگستروم رخ می‌دهد.
CH3COCH3+ hv <---------> .CH3CO+ .CH3

این واکنش یکی از عمومی‌ترین منابع تهیه رادیکالهای متیل و استیل است.
تابش امواج با طول موج کوتاه و ذرات بنیادی پر انرژی (مانند آنچه در فروپاشیهای هسته‌ای ملاحظه می‌شود) نیز امکان دارد که بسوی تهیه رادیکالها و یونها سوق داده شود. باید توجه داشت که چنین سیستمهایی همه روزه از اهمیت بیشتری برخوردار می‌شوند، لکن معمولا پیچیده هستند.
شناسایی رادیکالها
اولین روشهای شناسایی رادیکالها، مستلزم در نظر گرفتن خواص شیمیایی آنها بوده است. بعدها از روش های مطمئن‌تری مانند طیف سنجی جذبی و طیف سنجی جرمی استفاده شد. به طور کلی، شناسایی رادیکالها به روشهای زیر انجام می‌گیرد:

روشهای شیمیایی
ازاله آئینه (mirror removal method)
گیر اندازی رادیکالها
طیف‌بینی جذبی (absorption spectroscopy)
طیف‌سنجی جرمی (mass spectrometry)

ویرایش و تلخیص:آکاایران
     
#75 | Posted: 13 Dec 2011 08:48
چدن

چدن (Cast iron)، آلیاژی از آهن- کربن- سیلیسیم (Fe-C-Si) است که همواره محتوی عناصری در حد جزئی (کمتر از 1/0 درصد) و غالبا عناصر آلیاژی (بیشتر از 1/0 درصد) بوده و به صورت حالت ریختگی یا پس از عملیات حرارتی به کار برده می‌شود.

چدن

دید کلی
با وجود کاهش قابل توجه در تولید چدن‌ها در طول دهه گذشته، چدن‌ها به عنوان مهمترین آلیاژهای ریختگی مورد توجه بوده‌اند. محبوبیت ریشه ای چدن‌ها در ریخته گری اشکال پیچیده با هزینه‌های پایین تولید، قیمت تمام شده نسبتا پایین و محدوده وسیع خصوصیاتی که قابل دسترسی توسط کنترل دقیق ترکیب و سرعت خنک کردن بدون تغییرات بنیانی و اساسی در روش‌های تولید، است.
چدن خام
آهن، اغلب از کانه های اکسید یا کربنات که گوگرد، آرسنیک و غیره از آنها زدوده شده باشد با برشته کردن در هوا، و کاهش با کربن تهیه می‌شود. کانه آهن با کک و کربنات کلسیم آمیخته شده و در یک کوره بلند که دمای بیشینه آن 1300 درجه سانتیگراد است. گرم می‌شود ناخالصیهای عمده اسیدی به کمک سرباره (کلسیم سیلیکات، آلومینات و غیره) خنثی می‌شود و توده فلزات مذاب به صورت چدن خام به بیرون جریان می‌یابد چدن خام شامل 2 الی 4 درصد کربن و اندکی گوگرد، فسفر و سیلسیم است. چدن مذاب را به صورت خام یا پس از افزودن فلزهای آلیاژ دهنده، برای بهبود خواص چدن، در قالبهایی از ماسه یا فلز و بر حسب نوع مصرف، آنها را به صورت اشکال مختلف در می‌آورند.
آلیاژهای چدن
فلزهای آلیاژ دهنده برای بهبود کیفیت چدن برای مصارف ویژه به آن افزوده می‌شوند. آلیاژهای چدن در کارهای مهندسی که در آنها چدن معمولی ناپایدار است به کار می‌روند و حتی ممکن است در مواردی نیز، مثلا ساخت میل لنگ، جانشین فولاد شوند. در هر حال، با دارا بودن مزایایی از قبیل از قیمت تمام شده تولید پایین توام با قابلیت ریخته گری، استحکام، قابلیت ماشین کاری، سختی، مقاومت در برابر سایش، مقاوم در برابر خوردگی، انتقال حرارت و جذب ارتعاش در این آلیاژ آن را از سایر آلیاژهای ریختگی آهنی متمایز ساخته است.
انواع ساختارهای زمینه چدن
اساس خواص مکانیکی چدن به زمینه آن بستگی دارد. به همین دلیل است چدن ها را با عبارت ساختار زمینه آنها برای مثال انواع پرلیتی یا فریتی توصیف می‌کنند. مهمترین ساختار زمینه چدن عبارتند از:
فریت
فریت محلول جامد Fe-C است که به طور قابل ملاحظه‌ای Si و مقادیر کمتری Ni ,Cu ,Mn در آن حل شده‌اند. فریت نسبتا نرم، چکش خوار، استحکام کم، مقاومت به سایش ضعیف، شکست خوب، ضریب هدایت گرمایی نسبتا خوب و قابلیت ماشینکاری خوبی است. یک زمینه فریتی را می‌توان به طور ریختگی تولید کرد اما اغلب با عملیات حرارتی باز پخت (تابکاری) می‌توان به آن دست یافت.
پرلیت
مخلوطی از فریت و سمانتیت Fe<sub>3</sub>C است که توسط واکنش یوتکتیک از استینیت تشکیل شده و نام پرلیت از ظاهر صدف گونه‌اش مشتق شده است. پرلیت نسبتا سخت و از چقرمگی کمتری برخوردار بوده و ضریب هدایت گرمایی کم و در ضمن از ماشینکاری خوبی برخوردار است. وقتی فاصله بین دانه‌های پرلیت در زمینه کم می‌شود خواص مکانیکی افزایش می‌یابد مقدار کربن پرلیت در فولادهای غیر آلیاژی 0.8 % است در حالی که در چدنها بسته به ترکیب چدن و سرعت خنک شدن متغیر بوده و حتی می تواند کمتر از 0.5% در چدن های پرسیلسیم باشد.
فریت- پرلیت
ساختار مخلوطی است که غالبا برای رسیدن به خصوصیاتی بینابینی از آنچه که در فوق شرح داده شده به کار گرفته می‌شود.
بینیت
این ساختار می‌تواند به صورت ریختگی با افزودن عناصر آلیاژی Mo و Ni به مقادیر معین تولید شد. در ضمن جهت اطمینان بیشتر می‌توان توسط عملیات حرارتی آستمپر نیز به این ساختار رسید. این آلیاژ، با توجه به صرفه اقتصادی اخیرا توانسته‌اند نقش موثری بویژه در مهندسی خودرو، قطعات دنده ها، قطعات انتقال نیرو داشته باشند. مزایای چدن های گرافیت کروی آسمتپر عبارتند از: استحکام کششی بالا توام با چقرمگی، انعطاف پذیری و استحکام خوب، مقاومت به سایش و خراش، ظرفیت بالای جذب صدا و کارکرد، خواص ریخته کری خوب، فرم پذیری نزدیک به شکل نهایی حتی در شکل های خیلی پیچیده، قابلیت ماشینکاری خوب در حالت ریخته و حدود 10% صرفه جویی در وزن در مقایسه با فولاد.
آستنیت
برای پایدار نگاه داشتن این فاز در طول عمل خنک شدن یک عنصر آلیاژی با مقدار زیاد و معینی لازمست. چدن گرافیت ورقه ای و گرفیت کروی آلیاژی (نیکل- سخت) چدن هایی با زمینه آستنیتی و دارای خواص عالی حرارتی مقاومت به خوردگی و نیز غیر مغناطیسی هستند. این زمینه می‌تواند خصوصیات چقرمگی خوب، مقاومت به خزش، تنش پارگی تا دمای 800 درجه سانتیگراد و یک محدوده گسترده ای از انبساط حرارتی که تابع از Si موجود در چدن است را نشان دهد.
انواع چدن
چدن ها به دو گروه اصلی تقسیم بندی می‌شوند، آلیاژهایی برای مقاصد عمومی که موارد استعمال آنها در کاربردهای عمده مهندسی است و آلیاژهای با منظور و مقاصد ویژه از جمله چدن های سفید و آلیاژهای که برای مقاومت در برابر سایش، خوردگی و مقاوم در برابر حرارت بالا مورد استفاده قرار می‌گیرند.
چدن های عمومی (معمولی):
این چدن ها جزو بزرگترین گروه آلیاژهای ریختگی بوده و بر اساس شکل گرافیت به انواع زیر تقسیم بندی می‌شوند:

چدن گرافیت لایه ای یا چدن خاکستری ورقه‌ای
چدن گرافیت مالیبل یا چدن چکش‌خوار
چدن گرافیت کروی یا چدن نشکن
چدن گرافیت فشرده یا کرمی شکل

چدن های سفید و آلیاژی مخصوص:
این چدن ها با آلیاژهای چدنی معمولی فرق می‌کنند. میزان عنصر آلیاژی در آنها بیش از 3% بوده و لذا آن را نمی‌توان توسط مواد افزودنی به پاتیل اضافه کرده و به یک ترکیب پایه استانداردی رسید. این چدن های آلیاژهای به آلیاژهای عاری از گرافیت و گرافیت‌دار تقسیم بندی می‌شوند و به صورت های مقاوم به خوردگی، دمای بالا، سایش و فرسایش می‌باشند.

چدن های بدون گرافیت:
چدن سفید پرلیتی: مقاوم به سایش
چدن سفید مارتنزیتی (نیکل-سخت): مقاوم سایش
چدن پر کرم (33-17 %Cr): مقاوم به خوردگی، سایش و حرارت
چدن های دارای گرافیت:
چدن سوزنی: استحکام بالا و مقاوم به سایش
آستنیتی: شامل دو نوع نیکروسیلال یعنی نیکل سیلسیم بالا و نیکل مقاوم (Ni-resist) و هر دو مقاوم به حرارت و خوردگی
فریتی: شامل دو نوع چدن، پر سیلسیم (15%) مقاوم در برابر خوردگی و چدن 5%سیلسیم در سیلال مقاوم در برابر حرارت

برخی از کاربردهای چدن‌ها:

در تولید قطعات ریختگی تحت فشار از جمله شیر فلکه ها، بدنه های پمپ قطعات ماشین آلات که در معرض شوک و خستگی هستند، میل لنگ ها، چرخ دنده ها، غلتک ها، تجهیزات فرایند شیمیایی، مخازن ریختگی تحت فشار و...


برای خودرو و صنایع وابسته به آن مثلا در ساخت مفصل های فرمان، دیسک ترمزها، بازوها، میل لنگ‌ها و چرخ دند‌ه‌ها، صفحه کلاچ‌ها و...


در راه آهن، کشتیرانی و خدمات سنگین و دیگر جاهایی که نیاز به مقاومت در برابر شوک است مثلا در تجهیزات الکتریکی کشتی‌ها، بدنه موتور، پمپ ها، بست ها و غیره


قطعات غیر فشاری برای کاربردهای درجه حرارت بالا برای مثال در ساخت قطعات و جعبه های درگیر با آتش، میله های شبکه، قطعات کوره‌ها، قالبهای شمش، قالبهای شیشه، بوته‌های ذوب فلز.


اگر چدن های غیر آلیاژی به طور کلی مقاوم به خوردگی بویژه در محیط های قلیایی هستند، چدن‌های نیکل مقاوم و نیکروسیلال و نیکل و کروم بالا به صورت برجسته‌ای مقاوم به خوردگی در محیط هایی مناسب و مختص به خودشان هستند. مهمترین کاربرد این چدنها در پمپهای دنده‌ای حمل اسید سولفوریک، پمپ‌ها و شیرهایی که در آب دریا مصرف می‌شوند، قطعات مورد استفاده در سیستم های بخار و جابجایی محلول های آمونیاکی، سود و نیز برای پمپاژ و جابجایی نفت خام اسیدی در صنایع نفت هستند.

ویرایش و تلخیص:آکاایران
     
#76 | Posted: 13 Dec 2011 08:49
انواع چدن

اطلاعات کلی
چدن (cast iron) ، آلیاژی از آهن- کربن و سیلیسیم است که همواره محتوی عناصری در حد جزئی (کمتر از 0.1 درصد) و غالبا عناصر آلیاژی (بیشتر از 0.1 درصد) بوده و به حالت ریختگی یا پس از عملیات حرارتی به کار برده می‌شود. عناصر آلیاژی برای بهبود کیفیت چدن برای مصارف ویژه به آن افزوده می‌شود. آلیاژهای چدن در کارهای مهندسی که در آنها چدن معمولی ناپایدار است به کار می‌روند. اساسا خواص مکانیکی چدن به زمینه ساختاری آن بستگی دارد و مهمترین زمینه ساختار چدن‌ها عبارتند از: فریتی ، پرلیتی ، بینیتی و آستینتی. انتخاب نوع چدن و ترکیب آن براساس خواص و کاربردهای ویژه مربوطه تعیین می‌شود.

انواع چدن

طبفه‌بندی چدن‌ها
چدن ها به دو گروه اصلی طبقه‌بندی می‌شوند، آلیاژهایی برای مقاصد عمومی که موارد استعمال آنها در کاربردهای عمده مهندسی است و آلیاژهای با منظور و مقاصد ویژه از جمله چدنهای سفید و آلیاژی که برای مقاومت در برابر سایش ، خوردگی و مقاوم در برابر حرارت بالا مورد استفاده قرار می‌گیرند.
چدن های معمولی (عمومی)
این چدن ها چزو بزرگترین گروه آلیاژهای ریختگی بوده و براساس شکل گرافیت به انواع زیر تقسیم می‌شوند:

چدن های خاکستری ورقه ای یا لایه ای: چدن های خاکستری جزو مهمترین چدن های مهندسی هستند که کاربردی زیاد دارند نام این چدن ها از خصوصیات رنگ خاکستری سطح مقطع شکست آن و شکل گرافیت مشتق می‌شود.خواص چدن های خاکستری به اندازه ، مقدار و نحوه توزیع گرافیت‌ها و ساختار زمینه بستگی دارد. خود این‌ها نیز به کربن و سیلیسیم (C.E.V=%C+%⅓Si+%⅓P) و همچنین روی مقادیر جزئی عناصر ، افزودنی‌های آلیاژی ، متغیرهای فرایندی مانند، روش ذوب ، عمل جوانه زنی و سرعت خنک شدن بستگی پیدا می‌کنند. اما به طور کلی این چدن ها ضریب هدایت گرمایی بالایی داشته، مدول الاستیستیه و قابلیت تحمل شوکهای حرارتی کمی دارند و قطعات تولیدی از این چدن ها به سهولت ماشینکاری و سطح تمام شده ماشینکاری آنها نیز مقاوم در برابر سایش از نوع لغزشی است. این خواص آنها را برای ریختگی هایی که در معرض تنش‌های حرارتی محلی با تکرار تنشها هستند، مناسب می‌سازد. افزایش میزان فریت در ساختار باعث استحکام مکانیکی خواهد شد. این نوع حساس بودن به مقاطع نازک و کلفت در قطعات چدنی بدنه موتورها مشاهده می شود دیواره نازک و لاغر سیلندر دارای زمینه‌ای فریتی و قسمت ضخیم نشیمنگاه یا تاقان‌ها زمینه‌ای با پرلیت زیاد را پیدا می‌کند. همچنین در ساخت ماشین آلات عمومی ، کمپرسورهای سبک و سنگین ، قالب‌ها ، میل لنگ‌ها ، شیر فلکه‌هاو اتصالات لوله‌ها و غیره از چدنهای خاکستری استفاده می‌شود.

چدن های مالیبل یا چکش خوار: چدن های چکش خوار با دیگر چدن ها به واسطه ریخته گری آنها نخست به صورت چدن سفید فرق می‌کنند. ساختار آنها مرکب از کاربیدهای شبه پایدار در یک زمینه‌ای پرلیتی است بازپخت در دمای بالا که توسط عملیات حرارتی مناسب دنبال می‌شود باعث تولید ساختاری نهایی از توده متراکم خوشه‌های گرافیت در زمینه فریتی یا پرلیتی بسته به ترکیب شیمیایی و عملیات حرارتی می‌شود. ترکیب به کار برده شده براساس نیازهای اقتصادی ، نحوه باز پخت خوب و امکان جذب و امکان تولید ریخته‌گری انتخاب می‌شود. مثلا بالا رفتن Si بازپخت را جلو انداخته و موجب عملیات حرارتی خوب و سریعی با سیلکی کوتاه می‌شود و در ضمن مقاومت مکانیکی را نیز اصلاح می‌نماید. تاثیر عناصر به مقدار بسیار کم در این چدن ها دست آورد دیگری در این زمینه هستند. Te و Bi تشکیل چدن سفید در حالت انجماد را ترقی داده، B و Al موجب اصلاح قابلیت بازپخت و توام با افزایش تعداد خوشه‌های گرافیت می‌شود میزان Mn موجود و نسبت Mn/S برای آسان کردن عمل بازپخت می‌بایستی کنترل گردد. عناصری از جمله Cu و Ni و Mo را ممکن است برای بدست آوردن مقاومت بالاتر یا افزایش مقاومت به سایش و خوردگی به چدن افزود. دلیل اساسی برای انتخاب چدن های چکش خوار قیمت تمام شده پایین و ماشینکاری راحت و ساده آنهاست. کاربردهای آنها در قطعات اتومبیل قطعات کشاورزی ، اتصالات لوله ها ، اتصالات الکتریکی و قطعات مورد استفاده در صنایع معدنی است.

چدن های گرافیت کروی یا نشکن: این چدن در سال 1948 در فیلادلفیای آمریکا در کنگره جامعه ریخته گران معرفی شد. توسعه سریع آن در طی دهه 1950 آغاز و مصرف آن در طی سال های 1960 روبه افزایش نهاده و تولید آن با وجود افت در تولید چدن ها پایین نیامده است. شاخصی از ترکیب شیمیایی این چدن به صورت کربن 3.7% ، سیلیسیم 2.5% ، منگنز0.3% ، گوگرد 0.01% ، فسفر 0.01% و منیزیم 0.04% است. وجود منیزیم این چدن را از چدن خاکستری متمایز می‌سازد. برای تولید چدن گرافیت کروی از منیزیم و سریم استفاده می‌شود که از نظر اقتصادی منیزیم مناسب و قابل قبول است. جهت اصلاح و بازیابی بهتر منیزیم برخی از اضافه شونده‌هایی از عناصر دیگر با آن آلیاژ می‌شوند و این باعث کاهش مصرف منیزیم و تعدیل کننده آن است. منیزیم ، اکسیژن و گوگرد زدا است. نتیجتا منیزیم وقتی خواهد توانست شکل گرافیتها را به سمت کروی شدن هدایت کند که میزان اکسیژن و گوگرد کم باشند. اکسیژن‌زداهایی مثل کربن و سیلیسیم موجود در چدن مایع این اطمینان را می‌دهند که باعث کاهش اکسیژن شوند ولی فرآیند گوگردزدایی اغلب برای پایین آوردن مقدار گوگرد لازم است. از کاربردهای این چدن ها در خودروسازی و صنایع وابسته به آن مثلا در تولید مفصل‌های فرمان و دیسک ترمزها ، در قطعات تحت فشار در درجه حرارت های بالا مثل شیر فلکه‌ها و اتصالات برای طرحهای بخار و شیمیایی غلتکهای خشک‌کن نورد کاغذ ، در تجهیزات الکتریکی کشتی‌ها ، بدنه موتور ، پمپ‌ها و غیره است.

چدن های گرافیت فشرده یا کرمی شکل: این چدن شبیه خاکستری است با این تفاوت که شکل گرافیت‌ها به صورت کروی کاذب ، گرافیت تکه‌ای با درجه بالا و از نظر جنس در ردیف نیمه نشکن قرار دارد. می‌توان گفت یک نوع چدنی با گرافیت کروی است که کره‌های گرافیت کامل نشده‌اند یا یک نوع چدن گرافیت لایه‌ای است که نوک گرافیت گرد شده و به صورت کرمی شکل درآمده‌اند. ایت چدن ها اخیرا از نظر تجارتی جای خود را در محدوده خواص مکانیکی بین چدن های نشکن و خاکستری باز کرده است.

ترکیب آلیاژ موجود تجارتی که برای تولید چدن گرافیت فشرده استفاده می‌شود عبارت است از: Mg%4-5 ،Ti%8.5-10.5 ، Ca% 4-5.5 ، Al%1-1.5 ، Ce %0.2-0.5 ،Si%48-52 و بقیه Fe. چدن گرافیت فشرده در مقایسه با چدن خاکستری از مقاومت به کشش ، صلبیت و انعطاف‌پذیری ، عمر خستگی ، مقاومت به ضربه و خواص مقاومت در دمای بالا و برتری بازمینه‌ای یکسان برخوردار است و از نظر قابلیت ماشینکاری ، هدایت حرارتی نسبت به چدن های کروی بهتر هستند. از نظر مقاومت به شکاف و ترک خوردگی برتر از سایر چدن ها است. در هر حال ترکیبی از خواص مکانیکی و فیزیکی مناسب ، این چدن ها را به عنوان انتخاب ایده آلی جهت موارد استعمال گوناگون مطرح می‌سازد. مقاومت بالا در مقابل ترک‌خوردگی آنها را برای قالبهای شمش‌ریزی مناسب می‌سازد. نشان دادن خصوصیاتی مطلوب در دماهای بالا در این چدن ها باعث کاربرد آنها برای قطعاتی از جمله سر سیلندرها ، منیفلدهای دود ، دیسکهای ترمز ، دیسکها و رینگهای پیستون شده است.

چدن های سفید و آلیاژی مخصوص
کربن چدن سفید به صورت بلور سمانتیت (کربید آهن ، Fe3C) می‌باشد که از سرد کردن سریع مذاب حاصل می‌شود و این چدن ها به آلیاژهای عاری از گرافیت و گرافیت‌دار تقسیم می‌شوند و به صورتهای مقاوم به خوردگی ، دمای بالا، سایش و فرسایش می‌باشند.

چدن های بدون گرافیت: شامل سه نوع زیر می باشد:
چدن سفید پرلیتی: ساختار این چدنها از کاربیدهای یکنواخت برجسته و توپر M3C در یک زمینه پرلیتی تشکیل شده است. این چدنها مقاوم در برابر سایش هستند و هنوز هم کاربرد داشته ولی بی‌نهایت شکننده هستند لذا توسط آلیاژهای پرطاقت دیگری از چدن های سفید آلیاژی جایگزین گشته‌اند.
چدن سفید مارتنزیتی (نیکل- سخت): نخستین چدن های آلیاژی که توسعه یافتند آلیاژهای نیکل- سخت بودند. این آلیاژها به طور نسبی قیمت تمام شده کمتری داشته و ذوب آنها در کوره کوپل تهیه شده و چدن های سفید مارتنزیتی دارای نیکل هستند. Ni به عنوان افزایش قابلیت سختی پذیری برای اطمینان از استحاله آستنیتی به مارتنزیتی در طی مرحله عملیات حرارتی به آن افزوده می‌شود. این جدن ها حاوی Cr نیز به دلیل افزایش سختی کاربید یوتکتیک هستند. این چدنها دارای یک ساختار یوتکتیکی تقریبا نیمه منظمی با کاربیدهای یکنواخت برجسته و یکپاره M3C هستند که بیشترین فاز را در یوتکتیک دارند و این چدنها مقاوم در برابر سایش هستند.
چدن سفید پرکرم: چدن های سفید با Cr زیاد ترکیبی از خصوصیات مقاومت در برابر خوردگی ، حرارت و سایش را دارا هستند این چدنها مقاومت عالی به رشد و اکسیداسیون در دمای بالا داشته و از نظر قیمت نیز از فولادهای ضد زنگ ارزان تر بوده و درجاهایی که در معرض ضربه و یا بازهای اعمالی زیادی نیستند به کار برده می‌شوند این چدنها در سه طبقه زیر قرار می‌گیرند:

چدنهای مارتنزیتی با Cr %12-28
چدنهای فریتی با 34-30% Cr
چدنهای آستنیتی با 30-15%Cr و 15-10% Niبرای پایداری زمینه آستنیتی در دمای پایین.

طبقه بندی این چدنها براساس دمای کار ، عمر کارکرد در تنش های اعمالی و عوامل اقتصادی است. کاربرد این چدنها در لوله‌های رکوپراتو ، میله ، سینی ، جعبه در کوره‌های زینتر و قطعات مختلف کوره‌ها، قالب‌های ساخت بطری شیشه و کاسه نمدهای فلکه‌ها است.

چدن های گرافیت دار:
چدن های آستنیتی: شامل دو نوع (نیکل- مقاوم) و نیکروسیلال Ni-Si ، که هر دو نوع ترکیبی از خصوصیات مقاومت در برابر حرارت و خوردگی را دارا هستند. اگرچه چدن های غیر آلیاژی به طور کلی مقاوم به خوردگی بویژه در محیط های قلیایی هستند، این چدنها به صورت برجسته‌ای مقاوم به خوردگی در محیط هایی مناسب و مختص خودشان هستند. چدن های نیکل مقاوم آستنیتی با گرافیت لایه‌ای که اخیرا عرضه شده‌اند از خواص مکانیکی برتری برخوردار بوده ولی خیلی گران هستند. غلظت نیکل و کرم در آنها بسته به طبیعت محیط خورنده شان تغییر می‌کند. مهمترین کاربردها شامل پمپهای دنده‌ای حمل اسید سولفوریک، پمپ خلا و شیرهایی که در آب دریا مصرف می‌شوند، قطعات مورد استفاده در سیستم‌های بخار و جابه‌جایی محلول‌های آمونیاکی، سود و نیز برای پمپاژ و جابجایی نفت خام اسیدی در صنایع نفت هستند.
چدن های فریتی: شامل دو نوع زیر می‌باشد: چدن سفید 5% سیلیسیم در سیلال که مقاوم در برابر حرارت می‌باشد و نوع دیگر چدن پرسیلیسیم (15%) که از مقاومتی عالی به خوردگی در محیطهای اسیدی مثل اسید نیتریک و سولفوریک در تمام دماها و همه غلظتها برخوردارند. اما برخلاف چدن های نیکل- مقاوم ، عیب آن ، ترد بودن است که تنها با سنگ‌زنی می‌توان ماشینکاری نمود. مقاومت به خوردگی آنها در برابر اسیدهای هیدروکلریک و هیدروفلوریک ضعیف است. جهت مقاوم سازی به خوردگی در اسید هیدروکلریک می‌توان با افزودن Si تا 18-16% ، افزودن Cr%5-3 یا Mo %4-3 به آلیاژ پایه ، اقدام نمود.
چدن های سوزنی: در این چدنها Al به طور متناسبی جانشین Si در غلظت های کم می‌گردد. چدن های آلیاژهای Alدار تجارتی در دو طبقه بندی یکی آلیاژهای تا Al %6 و دیگری Al%18-25 قرار می‌گیرند. Al پتانسیل گرافیته‌شدگی را در هر دوی محدوده‌های ترکیبی ذکر شده حفظ کرده و لذا پس از انجماد چدن خاکستری بدست می‌آید. این آلیاژ به صورت چدنهای گرافیت لایه‌ای ، فشرده و کروی تولید می‌شوند. مزایای ملاحظه شده شامل استحکام به کشش بالا ، شوک حرارتی و تمایل به گرافیته شدن و سفیدی کم می‌باشند که قادر می‌سازند قطعات ریختگی با مقاطع نازک‌تر را تولید کرد. چدن های با Al کم مقاومت خوبی به پوسته پوسته شدن نشان داده و قابلیت ماشینکاری مناسبی را نیز دارا هستند. محل های پیشنهادی جهت کاربرد آنها منیفلدهای دود ، بدنه توربوشارژرها ، روتورهای دیسک ترمز، کاسه ترمزها ، برش سیلندرها، میل بادامکها و رینگهای پیستون هستند. وجود Al در کنار Si در این نوع چدنها باعث ارائه خواص مکانیکی خوب توام با مقاومت به پوسته‌شدگی در دماهای بالا می‌شود. این آلیاژها مستعد به تخلخل‌های گازی هستند. آلومینیوم حل شده در مذاب می توان با رطوبت یا هیدروکربنهای موجود در قالب ترکیب شده و هیدروژن آزاد تولید کند. این هیدروژن آزاد قابل حل در فلز مذاب بوده و باعث به وجود آوردن مک‌های سوزنی شکل در انجماد می‌شود.

ویرایش و تلخیص:آکاایران
     
#77 | Posted: 13 Dec 2011 08:49
نقره

معرفی
نقره ، یکی از عناصر شیمیایی، با نشانه Ag ، دارای عدد اتمی 47 ، وزن اتمی 107.8682 و در گروه یک فرعی (IB) جدول تناوبی قرار گرفته است. نقره فلزی سفید مایل به خاکستری و براق است و از نظر شیمیایی یکی از فلزات سنگین و از جمله فلزات نجیب و از نظر تجارتی عنصری گرانبها تلقی می‌گردد. نقره یکی از عناصری است که از گذشته های دور و دورانهای باستان بعنوان یک فلز شناخته شده و مورد استفاده واقع میشده و از آن در کتابهای فراعنه مصری ، که قدمت این کتابها به حدود 3600 سال قبل از میلاد مسیح بالغ می‌گردد، بعنوان فلزی که از نظر ارزش دارای {5}{2}frac\ ارزش طلا است، یاد شده است. از نقره ، 25 ایزوتوپ رادیواکتیو شناخته شده اند که دارای اجرام اتمی 102 الی 117 می‌باشند. نقره معمولی از دو ایزوتوپ با جرمهای 107 و 109 تشکیل شده است.

نقره

منابع طبیعی
نقره جزء عناصر نسبتا کمیاب بوده و از نظر فراوانی در قشر جامد زمین ، در مرتبه شصت و سومین عنصر قرار دارد. این عنصر تشکیل دهنده حدود6-10 ×1% از پوسته زمین است. برخی اوقات نقره بصورت عنصر آزاد یافت می‌شود (نقره خالص) و گاهی نیز به صورت آلیاژ با سایر فلزات ملاحظه می‌شود. در هر صورت باید توجه داشت که در اکثر نقاط، نقره بصورت مواد معدنی حاوی ترکیبات نقره ملاحظه می‌شود. مهمترین کانیهای نقره عبارتند از: آرجنتیت (Ag2S,argentite) و سرارجیریت (AgCl ,horn silver,Ceragyrite).
از سوی دیگر تعدادی از کانیهایی که در آنها نقره با سولفیدهای سایر فلزات ترکیب شده است نیز وجود دارد که عبارتند از: استفانیت (stephanite) بفرمول(5Ag2S.Sb2S5) ، پلی بازیت (polybasite) بفرمول (Cu_2S, Ag_2S).(Sb_2S_3, As_2S_3)، پروستیت(proustite) بفرمول (3Ag_2S.As_2S_3)و پیرآرجیریت (pyrargyrite) بفرمول (3Ag_2S.Sb_2S_3).
حدود سه چهارم نقره تولیدی ، در حقیقت فراورده جانبی حاصل از استخراج سایر فلزات است. علاوه بر این ، مقدار مهمی از نقره نیز از طریق بازیافت سکه‌های از رده خارج شده که باید با مقداری نقره ممزوج شونده و یا از مقدار نقره آنها کم شود، جمع آوری می‌گردد.همچنین بازیافت نقره از قراضه های صنعتی که ضمنا شامل باقیمانده های عکاسی است، با اهمیت تلقی می‌گردد.
خصوصیات فلز نقره
نقره خالص فلزی براق و نسبتا نرم است که تا اندازه ای سخت تر از طلاست. زمانیکه این فلز پرداخت شود، دارای درخشندگی می‌شود و می‌تواند 95% از نور تابیده به خود را بازتاب نماید. این عنصر در میان کلیه فلزات ، مقام بهترین رسانا در زمینه گرما و الکتریسیته را دارا است و در زمینه قدرت چکش خواری و مفتول شوندگی دارای مرتبه دوم پس از طلا است. چگالی نقره 10.5 برابر آب است، بصورتیکه یک متر مکعب از آن دارای وزن 10500 کیلوگرم می‌باشد. نقره در 961 درجه سانتیگراد ذوب شده و در حدود 2200 درجه سانتیگراد می‌جوشد.
طلا و نقره مانند محلولهای واقعی می‌توانند در هر نسبتی با یکدیگر مخلوط شده و آلیاژ تشکیل دهند. کیفیت نقره و یا بعبارت بهتر عیار آن بر حسب تعداد قسمت نقره خالص در 1000 قسمت مخلوط فلزات بیان می‌گردد و بطور معمول نقره تجاری دارای عیار 999 است.

خواص شیمیایی نقره
اگرچه نقره از نظر شیمیایی در میان فلزات نجیب فلزی بسیار واکنش پذیر تلقی می‌گردد، لکن باید توجه داشت که در مقایسه با سایر عناصر از مرتبه واکنش پذیری قابل ملاحظه‌ای برخوردار نمی‌باشد. این عنصر به آسانی اکسیده شدن آهن اکسید نمی‌شود، لکن با گوگرد و هیدروژن سولفید واکنش داشته و تشکیل همان تیرگی آشنا را می‌دهد که در نقره‌هایتان ملاحظه می‌کنید.
برای رفع این نقیصه می‌توان آبکاری نقره را با کمک رودیم به انجام رسانیده و از وقوع تیرگی مورد نظر پیشگیری نمود همچنین با استفاده از کرم (Cream) یا پولیش نقره می‌توان لایه تیره بسیار نازکی را که نقره در ترکیب با گوگرد بوجود آورده است را زدوده و آن را مجددا براق نمود. از طرف دیگر این تیرگی را می‌توان از نظر شیمیایی بوسیله حرارت دادن ظرف مورد نظر در محلوا رقیقی از کلرید سدیم و کربنات هیدروژن سدیم یا قرار دادن قسمت تیره در تماس با فلزی فعالتر مانند آلومینیوم که می‌تواند با گوگرد ترکیب شود و مجددا فلز را به حالت اولیه برگرداند، از بین برد.
نقره نمی‌تواند با اسیدهای غیر اکسیدکننده مانند اسیدهای کلریدریک و سولفوریک یا بازهای قوی مانند هیدروکسید سدیم واکنش نماید، لکن اسیدهای اکسنده مانند اسید نیتریک یا اسید سولفوریک غلیظ آن را در خود حل کرده و یون یک مثبت نقره (+
Ag) را تشکیل می‌دهند. این یون که در کلیه ترکیبات ساده و محلول نقره وجود دارد، تقریبا بصورت ساده ای با استفاده از عوامل احیا کننده آلی مانند آنچه در آئینه های نقره ای ملاحظه می‌شود، به فلز آزاد احیا می‌گردد. برای آبکاری نقره لازم است یونهای کمپلکس نقره احیا شود. یون (+
Ag)بی‌رنگ است، لکن تعدادی از ترکیبات نقره بدلیل نفوذ سایر اجزای تشکیل دهنده ساختمانی رنگینند. باید توجه داشت که اکسیژن درحد حیرت انگیزی در نقطه ذوب نقره به میزان 20 قسمت حجمی از اکسیژن در یک قسمت حجمی نقره حل می‌شود. پس از سرد کردن مایع مورد نظر نیز اکسیژن به میزان 75% قسمت (از نظر حجمی) در نقره باقی می‌ماند.
تجزیه و شناسایی
محلولهای حاوی یون نقره را می‌توان به آسانی تشکیل رسوب کلرید نقره بوسیله افزایش اسید کلریدریک ، شناسایی کرد. این رسوب را می‌توان از رسوبهای سرب و جیوه یک ظرفیتی ، بوسیله قدرت حل شدن آن درهنگام افزودن هیدروکسید آمونیوم اضافی و ایجاد رسوب مجدد با افزودن اسید نیتریک متمایز نمود. مضافا تجزیه وزنی بوسیله کلرید نقره یا برمید نقره که به آسانی قابل رسوب دادن ، خشک کردن و توزین می‌باشند، میسر می‌باشد. همچنین می‌توان یون نقره را بوسیله عمل الکترولیز به نقره فلزی احیا و بدین روش توزین نمود. از محلول تیوسیانات پتاسیم استاندارد شده نیز می‌توان برای تجزیه حجمی نقره استفاده کرد.
ترکیبات نقره
نقره در ترکیباتش اکثرا بصورت یک ظرفیتی است. لکن اکسید ، فلوئورید و سولفید دو ظرفیتی نقره نیز ملاحظه شده است. تعدادی از ترکیبات مهم نقره عبارتند از:

نیترات نقره (AgNO_3): ترکیبی بی‌رنگ ، بسیار محلول ، اساسا سمی و به سادگی به نقره فلزی احیا می‌شود و از آن در تهیه ترکیبات نقره ، آئینه های نقره ، جوهرها استفاده می‌شود.


هیدروکسید دی آمین نقره Ag(NH_3)_2]OH]: ترکیب کوئوردیناسیونی محلول در آب که به وسیله افزودن هیدروکسید آمونیوم به محلولهای املاح نقره ، تشکیل می‌شود. این ترکیب در اثر ماندن تشکیل ترکیب بسیار منفجره نقره فولمینات شده را می‌دهد.


سیانید نقره (AgCN): مورد مصرف بوسیله سیانید سدیم یا پتاسیم اضافی در آبکاری برای تشکیل یونهای کمپلکس-
Ag(CN)_2و --
Ag(CN)_3که به فلز نقره احیا می‌شوند.


کلرید نقره (AgCl): ترکیب سفید نامحلول که در هیدروکسید آمونیوم حل شده تشکیل یونهای کمپلکس +
Ag(NH_3)_2 می‌دهد. در عکاسی و نیز بعنوان آشکار کننده یونیزاسیون برای اشعه های کیهانی، کاربرد دارد.


برمید نقره (ArBr): ترکیب نامحلول زرد روشن که نسبت به AgCl نامحلولتر است و بیشتر در عکاسی به مصرف می‌رسد.


یدید نقره (AgI): ترکیب نامحلول زرد رنگ و نامحلولتر از AgBr است و برای اصلاح وضعیت ابرها به منظور بارندگی (Cloud Seading) و در عکاسی کاربرد دارد.


سولفید نقره (Ag_2S): نامحلولترین نمک نقره ، سیاه رنگ و جزء اصلی تشکیل دهنده تیرگی ظروف نقره می‌باشد.

کمپلکس های نقره
نقره یک ظرفیتی تعداد زیادی از ترکیبات پایدار کوئوردیناسیونی تشکیل می‌دهد. این ترکیبات اغلب دو کوئوردینانسی بوده، دارای دو گروه یونی یا مولکولی پیوسته به یک یون مرکزی +
Ag مانند Ag(CN)_2 می‌باشند. کمپلکسهای کوئوردیناسی مانند -AgCl_3]
2] نیز شناخته شده‌اند و احتمالا کمپلکسهای چهار کوئوردیناسی مانند-AgCl_4]
3] در محلولها رخ می‌دهد. نقره دو ظرفیتی می‌تواند در برابر تجزیه ، بوسیله تشکیل یون +Ag
2 با استفاده از ترکیبات آلی مانند ارتو_ فنانترولین ، پیریدین و alpha' ،\alpha\ _ دی پیریدیل پایدار شود. یون نقره سه ظرفیتی (+Ag
3) نیز با استفاده از کمپلکس شدن به وسیله اتیلن دی بی گوایند پایدار می‌شود. از طرف دیگر کلیه فلزات ضرب سکه ، یعنی مس ، نقره و طلا به آسانی با موادیکه اتمهای نیتروژن ، گوگرد یا هالوژن برای اتصال با آنها تدارک می‌کنند، کمپلکس می‌شوند (در مقایسه با موادیکه تدارک اکسیژن می‌نمایند). بعنوان مثال کمپلکسهای نقره با یون هیدروکسید (در مقایسه با کمپلکسهای هیدروکسیدروی که کوئوردینانس‌شونده خوبی با اکسیژن هستند) خیلی پایدار نیستند، بنابراین اکسید نقره در محلولهای قوی هیدروکسید سدیم فقط به میزان کمی حل می شود، در حالیکه هیدروکسید روی با توجه به کوئوردیناسیون شدنش با هیدروکسید ، در آن حل می‌شود.
موارد کاربرد نقره

نقره در اغلب مصارفش با یک یا چند فلز ، آلیاژ شده و بدان صورت مصرف می‌شود. مهمترین مصرف این فلز در ضرب سکه است نقره همچنین دارای مصارف معروفی در زمینه جواهر سازی و ظروف نقره و نیز آب نقره است.


به دلیل ناپایداری در مقابل اسیدهایی غیر اکسنده به صورت بوته و یا سایر وسایل شیمیایی مصرف می‌شود و گاهی ابزار آلات جراحی ، لحیم نقره و باطریهای انباره‌ای مقاوم در برابر خوردگی را از نقره تهیه می‌کنند.


در آینه سازی به مقدار زیاد نقر ه مصرف می‌شود وهمچنین مقدار زیادی نقره برای تهیه نقره هالیدها در عکاسی مصرف می‌شود.


رسانایی عالی نقره موجب کاربرد هرچه بیشتر آن در الکتروتکنیک شده است. از آلیاژهایی که در آنها نقره بعنوان جزئی از کل مصرف می‌شود، می‌توان ملغمه‌های دندانپزشکی و پیستونهای موتور بلبرینگ را نام برد.


همچنین نقره دارای خواص قارچ‌کشی است و در مواردی از آن در فرایندهای سالمسازی (Sterilization) آب استفاده می‌شود.

ویرایش و تلخیص:آکاایران
     
#78 | Posted: 13 Dec 2011 08:50
مواد تشکیل دهنده شامپو -آکاایران

شامپو از دو قسمت عمده تشكيل شده است:


1- مواد فعال سطحي: جزء اصلي يك شامپو مواد فعال كننده سطحي آن است.
موادفعال كننده سطح به طوركلي به چهار دسته آنيوني، كاتيوني، آمفوتري و غير يوني تقسيم بندي مي شوند. در شامپو معمولا تركيبي از موادفعال آنيوني (مانند سديم لارت سولفات)، مواد آمفوتري (مانند بتائين ها) و مواد غيريوني (مانند كوكونات فتي اسيد دي اتانول آميد) به عنوان مواد فعال كننده سطحي يا جزء اصلي استفاده مي شود.
2- افزودني ها: بفيه اجزاء به عنوان افزودني به شامپو اضافه مي شوند.


افزودني هاي شامپو خود به دو دسته تقسيم بندي مي شوند.


الف- افزودني هاي عمومي
موادي مانند نگهدارنده ها براي جلوگيري از آلودگي ميكروبي، نمك براي افزايش قوام شامپو و اسانس براي خوشبو نمودن شامپو و ا.د.ت.‌آ (EDTA) براي كاهش سختي آب و سيتريك اسيد جهت تنظيم پ هاش جزء افزودني هاي شامپو به حساب مي آيند. اگر به تركيبات تشكيل دهنده شامپوهادقت كنيم خواهیم دید اجزائي مثل اسيدسيتريك، نمك، ا.د.ت.ا، نگهدارنده، اسانس، رنگ و آب در همه شامپوها مشترك هستند بنابراين در انتخاب شامپو دقت به اين موارد اهميتي ندارد.

ب- افزودني هاي اختصاصي
در فرمولاسيون شامپوهاي نوين مواد ويژه اي براي خلق اثربخشي خاص به شامپو اضافه مي گردند تا شامپو علاوه بر شويندگي بتواند ويژگي هاي زیبایی مورد انتظار را نیز برآورده نمايد. در انتخاب شامپوي مناسب دقت به مواد فعال كننده سطح و همچنين افزودني هاي اختصاصي بسيار مهم است.


در برخي از شامپوهاي جديد اجزاء ويژه اي به نام ضخيم كننده‏(Thickner) اضافه شده است. اين شامپوها در واقع سطح تارهاي مو را با لايه اي از پروتئين مي پوشانند بنابراين باعث مي شوند هربار كه شما اين شامپو را استفاده مي كنيد موي شما پر پشت تر به نظر برسد.
پروتئين‏ كراتين و آمينو اسيدها به ساقه مو مي پيوندند و شكافهاي ايجاد شده در اثر استفاده از مواد نامرغوب را پر مي كند. اين امر باعث افزايش مقاومت مو و محافظت از آن مي گردد. پروتئين تخم مرغ با مو پيوند ايجاد نمي كند بنابراين استفاده از آن در شامپو فقط يك مانور تبليغاتي (Gimmick) است.
مواد مرطوب كننده‏، موي شما را هيدراته مي كند درست همان اثري كه بر روي پوست هم دارد.
پنتنول و ويتامين ب5 برخلاف بقيه ويتامين ها به داخل محور مو نفوذ مي كنند و براي افزايش استحكام و سلامت مو مفيد مي باشد. (دقت کنید که از ویتامین برای افزودن خواص نرم کنندگی استفاده شده نه تغذیه و تقویت مو)
هرچند پروتوئين موجود در شامپو ها به داخل محور مو نفوذ نمي كنند اما با پوشانيدن سطح مو باعث پرپشت به نظر آمدن و افزايش خاصيت نرم كنندگي مي شوند.
پروتوئين ابريشم به افزایش درخشندگی مو كمك مي كند.
     
#79 | Posted: 13 Dec 2011 08:50
اورانیوم چیست - آکاایران

اورانیوم یکی از عنصرهای شمیایی است که عدد اتمی آن ۹۲ و نشانه آن U است و در جدول تناوبی جزو آکتنیدها قرار می‌گیرد. ایزوتوپ ‎۲۳۵U آن در نیروگاه‌های هسته‌ای به عنوان سوخت و در سلاح‌های هسته‌ای به عنوان ماده منفجره استفاده می‌شود.

اورانیوم به طور طبیعی فلزی است سخت، سنگین، نقره‌ای رنگ و پرتوزا. این فلز کمی نرم تر از فولاد بوده و تقریبآ قابل انعطاف است. اورانیوم یکی از چگالترین فلزات پرتوزا است که در طبیعت یافت می‌‌شود. چگالی آن ۶۵٪ بیشتر از سرب و کمی کمتر از طلا است.
سال‌ها از اورانیوم به عنوان رنگ دهنده لعاب سفال یا برای تهیه رنگ‌های اولیه در عکاسی استفاده می‌شد و خاصیت پرتوزایی (رادیواکتیو) آن تا سال ۱۸۶۶ ناشناخته ماند و قابلیت آن برای استفاده به عنوان منبع انرژی تا اواسط قرن بیستم مخفی بود.
● فراوانی
این عنصر از نظر فراوانی در میان عناصر طبیعی پوسته زمین در رده ۴۸ قراردارد.
اورانیوم در طبیعت بصورت اکسید و یا نمک‌های مخلوط در مواد معدنی (مانند اورانیت یا کارونیت) یافت می‌‌شود. این نوع مواد اغلب از فوران آتشفشان‌ها بوجود می‌‌آیند و نسبت وجود آنها در زمین معادل دو در میلیون نسبت به سایر سنگها و مواد کانی است. اورانیوم طبیعی شامل ‎۹۹/۳% از ایزوتوپ ‎۲۳۸U و ‎۰/۷% ‎۲۳۵U است.
این فلز در بسیاری از قسمت‌های دنیا در صخره‌ها، خاک و حتی اعماق دریا و اقیانوس‌ها وجود دارد. میزان وجود و پراکندگی آن از طلا، نقره یا جیوه بسیار بیشتر است.
● تاریخچه
اورانیوم در سال ۱۷۸۹ توسط مارتین کلاپروت (Martin Klaproth) شیمی دان آلمانی از نوعی اورانیت بنام پیچبلند (Pitchblende) کشف شد. این نام اشاره به سیاره اورانوس دارد که هشت سال قبل از آن، ستاره شناسان آن را کشف کرده بودند.
اورانیوم یکی از اصلی‌ترین منابع گرمایشی در مرکز زمین است و بیش از ۴۰ سال است که بشر برای تولید انرژی از آن استفاده می‌‌کند.
دانشمندان معتقد هستند که اورانیوم بیش از ۶/۶ بیلیون سال پیش در اثر انفجار یک ستاره بزرگ بوجود آمده و در منظومه شمسی پراکنده شده است.
● ویژگی‌های اورانیوم
اورانیوم سنگین‌ترین (به بیان دقیقتر چگالترین) عنصری است که در طبیعت یافت می‌شود (هیدروژن سبکترین عنصر طبیعت است.)
اورانیوم خالص حدود ‎۱۸/۷ بار از آب چگالتر است و همانند بسیاری از دیگر مواد پرتوزا در طبیعت بصورت ایزوتوپ یافت می‌‌شود.
اورانیوم شانزده ایزوتوپ دارد. حدود ‎۹۹/۳ درصد از اورانیومی که در طبیعت یافت می‌شود ایزوتوپ ۲۳۸ (U-۲۳۸) است و حدود ‎۰/۷ درصد ایزوتوپ ۲۳۵ (U-۲۳۵). دیگر ایزوتوپ‌های اورانیم بسیار نادر هستند.
در این میان ایزوتوپ ۲۳۵ برای بدست آوردن انرژی از نوع ۲۳۸ آن بسیار مهم‌تر است چرا که U-۲۳۵ (با فراوانی تنها ‎۰/۷ درصد) آمادگی آن را دارد که در شرایط خاص شکافته شود و مقادیر زیادی انرژی آزاد کند. به این ایزوتوپ Fissil Uranium، به معنای «اورانیوم شکافتنی» هم گفته می‌‌شود و برای شکافت هسته‌ای استفاده می‌شود.
اورانیوم نیز همانند دیگر مواد پرتوزا دچار تباهی می‌‌شود. مواد رادیو اکتیو دارای این خاصیت هستند که از خود بطور دایم ذرات آلفا و بتا و یا اشعه گاما منتشر می‌‌کنند.
U-۲۳۸ باسرعت بسیار کمی تباه می‌‌شود و نیمه عمر آن در حدود ‎۴،۵۰۰ میلون سال (تقریبآ معادل عمر زمین) است.
این موضوع به این معنی است که با تباه شدن اورانیوم با همین سرعت کم انرژی معادل ‎۰/۱ وات برای هر یک تن اورانیوم تولید می‌‌شود و این برای گرم نگاه داشتن هسته زمین کافی است.
● شکاف هسته‌ای اورانیوم
U-۲۳۵ قابلیت شکاف هسته‌ای دارد. این نوع از اتم اورانیوم دارای ۹۲ پروتون و ۱۴۳ نوترون است (بنابراین جمعآ ۲۳۵ ذره در هسته خود دارد و به همین دلیل U-۲۳۵ نامیده می‌‌شود)، کافی است یک نوترون دریافت کند تا بتواند به دو اتم دیگر تبدیل شود.
این عمل با بمباران نوترونی هسته انجام می‌‌گیرد، در این حالت یک اتم U-۲۳۵ به دو اتم دیگر تقسیم می‌‌شود و دو، سه و یا بیشتر نوترون آزاد می‌‌شود. نوترون‌های آزاد شده خود با اتم‌های دیگر U-۲۳۵ ترکیب می‌‌شوند و آنها را تقسیم کرده و به همین منوال یک واکنش زنجیره‌ای از تقسیم اتم‌های U-۲۳۵ تشکیل می‌‌شود.
اتم U-۲۳۵ با دریافت یک نوترون به اورانیوم ۲۳۶ تبدیل می‌‌شود که ثبات و پایداری نداشته و تمایل دارد به دو اتم با ثبات تقسیم شود. انجام عمل تقسیم باعث آزاد شدن انرژی می‌‌شود بگونه‌ای که جمع انرژی حاصل از تقسیم زنجیره اتمهای U-۲۳۵ بسیار قابل توجه می‌شود.
● نمونه‌ای از این واکنش‌ها به اینصورت است:
U-۲۳۵ + n –> Ba-۱۴۱ + Kr-۹۲ + ۳n + ‎۱۷۰ Million electron Volts‎
U-۲۳۵ + n –> Te-۱۳۹ + Zr-۹۴ + ۳n + ۱۹۷ Million electron Volts
که در آن: electron Volt = ۱.۶۰۲ x ۱۰-۱۹ joules
(یک ژول انرژی معادل توان یک وات برای مصرف در یک ثانیه است)
مجموع این عملیات ممکن است در محلی بنام رآکتور هسته‌ای انجام گیرد. رآکتور هسته‌ای می‌‌تواند از انرژی آزاد شده برای گرم کردن آب استفاده کند تا در نهایت از آن برای راه اندازی توربین‌های بخار و تولید برق استفاده شود.

دانشجویان
     
#80 | Posted: 13 Dec 2011 08:51
آمونیاک چیست - آکاایران

آمونیاک ، مهمترین ترکیب هیدروژنه ازت بوده ، در طبیعت از تجزیه مواد آلی ازت دار حاصل می*گردد. این ماده ، گازیست بی*رنگ با مزه فوق*العاده تند و زننده که اشک*آور و خفه*کننده نیز می*باشد. گاز آمونیاک از هوا سبک*تر بوده ، به*سهولت به مایع تبدیل می*شود.

● اطلاعات کلی

آمونیاک ، مهمترین ترکیب هیدروژنه ازت بوده ، در طبیعت از تجزیه مواد آلی ازت دار حاصل می*گردد. این ماده ، گازیست بی*رنگ با مزه فوق*العاده تند و زننده که اشک*آور و خفه*کننده نیز می*باشد. گاز آمونیاک از هوا سبک*تر بوده ، به*سهولت به مایع تبدیل می*شود. آمونیاک در آب بسیار محلول است و در منهای ۷۷,۷ درجه سانتی*گراد منجمد و در منهای ۳۳,۵ درجه سانتی*گراد به جوش می*آید.
وزن مخصوص محلول اشباع آمونیاک ۰,۸۸ گرم بر سانتی*متر مکعب است.

● موارد استفاده

در کارخانجات یخ سازی ، در ساخت کودهایی از قبیل نیترات ، سولفات و فسفات آمونیوم ، تهیه اسید نیتریک ، دارو و مواد منفجره بکار می*رود.

آمونیاک تجارتی
محلول آمونیاکی که معمولا در تجارت ، خرید و فروش می*شود، ۲۰ تا ۲۲ درجه سوم (۲۰.۷ درصد و تکاتف نسبی آن d=۰,۹۲) و یا ۲۸ تا ۲۹ درجه (۳۲.۷ درصد آمونیاک) می*باشد.

● روشهای تهیه آمونیاک

آمونیاک را می*توان اصولا از سه منبع زیر تهیه کرد:

تقطیر زغال سنگ که از آبهای آمونیاکی آن ، ابتدا آمونیاک و سپس سولفات آمونیاک تهیه می*کنند.
سنتز مستقیم
تهیه سینامالدئید و سیانوزها
● تقطیر زغال سنگ برای تهیه آمونیاک
منظور از تقطیر زغال سنگ استفاده از گازهای سوختنی و یا کک برای صنایع فلزسازی است که بحث مفصلی را تشکیل می*دهد و مربوط به این برنامه نیست. لیکن در این جا آن قسمت از عملیات تقطیر که مربوطه به تهیه آمونیاک و سولفات آن است، از نظر تکمیل این مبحث بررسی می*شود.
زغال سنگ ، دارای ۱ تا ۱,۵ درصد نیتروژن آلی است و در موقعی*که آب را تقطیر کنیم، قسمتی از این نیتروژن ، بصورت آزاد و قسمت دیگری به حالت آمونیاک و ترکیبات آمونیاکی فرار و غیر فرار از دستگاههای تقطیر خارج می*شود و در خنک کننده هایی که به همین منظور بعد از قرنهای تقطیر قرار داده*اند، مخلوط با قطرانهای زغال سنگی جمع آوری می*گردد.

● نمکهای آمونیاکی
نمکهای آمونیاکی که از تقطیر زغال سنگ بدست می*آیند، بر دو نوعند: نمکهای فرار مانند کربنات آمونیوم CO۳(NH۴)۲ و سولفیدرات SHNH۴ و S(NH۴)۲ که به*آسانی بوسیله بخار آب برده می*شوند، نمکهای ثابت و غیر
فرار مانند کلرید آمونیوم NH۴Cl و هیپوسولفیت S۲O۳(NH۴)۲ و غیره که بوسیله باز غیر فراری مانند آهک تجزیه می*گردند.

ضمنا باید متذکر شد، آمونیاکی که از تقطیر یک تن زغال سنگ حاصل می*شود، طبعا با مقدار ازت موجود در زغال متغیر است و این مقدار بین ۱,۴ کیلوگرم تا ۴,۶ کیلوگرم نوسان دارد و به*ندرت در بعضی از انواع زغال سنگها این مقدار به ۷,۲ کیلوگرم می*رسد.
معمولا هرگاه عمل تقطیر زغال سنگ را در مجاورت ۲,۵ درصد آهک انجام دهند، بهره آمونیاک تا ۲۰ درصد افزایش نشان می*دهد و به هر صورت ، آمونیاک و کلیه ترکیبات آمونیاکی را که در بالا نام بردیم، می*توان در دستگاههای خنک کننده از قطرانهایی که همراه آنها می*باشند، جدا کرد و اصطلاح صنعتی این قبیل محلولهای آمونیاکی را آبهای آمونیاکی می*نامند که آنها را ابتدا در ستونی تقطیری وارد می*کنند. سپس تحت تاثیر شیر آهک قرار می*دهند و در آنجا آمونیاک و املاح فرار آنها بوسیله بخار آب برده می*شوند، در حالیکه املاح غیر فرار تحت تاثیر شیر آهک ، تجزیه و به آمونیاک تبدیل می*گردند.

● خطرات آتش سوزی و انفجار
آمونیاک ، گازیست قابل اشتعال و حدود اشتعالش ۱۶ تا ۲۵ درصد حجمی گاز آمونیاک در هوا می*باشد. حضور مواد نفتی و دیگر مواد قابل اشتعال ، خطر حریق را افزایش می*دهند. محلول غلیظ اکسید نقره از محلول آمونیاک حل شده و تولید فولمینات نقره به فرمول CNOAg می*نماید که ماده ای شدیداً قابل انفجار است. همچنین گاز آمونیاک در اثر حرارت از ۴۰۰ درجه به بالا تجزیه شده ، تولید هیدروژن می*نماید.

● خطرات بهداشتی
سبب تحریکات سیستم تنفسی ، *پوست و چشم شده و با آسیب رساندن به ریه*ها در اثر مواجهه با حجم زیاد این گاز می*تواند سبب مرگ شود. در صورت تماس با آمونیاک مایع ، سوختگی شدید در محل تماس ایجاد می*گردد. آستانه مجاز مواجهه با آن ، ppm ۵۰ است و جهت کمکهای اولیه ، قسمتهای آلوده سطح بدن را با آب و صابون شسته و چشمها را نیز با آب فراوانی شستشو داد و به پزشک مراجعه نمود.

● طریقه اطفاء حریق
در صورتی*که سیلندر گاز آمونیاک مشتعل شد، نباید شعله آن را خاموش نمود، مگر اینکه قبلاً بتوان جریان گاز را قطع کرد. در حین عملیات اطفاء ، باید سیلندرهای حاوی گاز آمونیاک را با آب خنک نمود. از پودر شیمیایی خشک یا گاز کربنیک یا آب به*صورت اسپری جهت اطفاء می*توان استفاده نمود. به هنگام عملیات باید از لباس کاملاً ایمن و سیستم حفاظتی دستگاه تنفس استفاده کرد.

● طریقه نگهداری و حمل ونقل
آمونیاک باید در سیلندرهای استیل نگهداری و توسط تانکرهای مخصوص آن حمل گردد. باید سعی نمود از رسیدن تنشهای فیزیکی و حرارت زیاد به ظروف محتوی آمونیاک جلوگیری شود. انبار و محل نگهداری آن باید مقاوم در برابر حریق بوده و دارای سیستم اعلام و اطفاء اتوماتیک باشد. آمونیاک باید جدا از موادی چون گازهای اکسید کننده ، کلر ، برم ، ید و اسیدها نگهداری شود.
     
صفحه  صفحه 8 از 11:  « پیشین  1  2  3  4  5  6  7  8  9  10  11  پسین » 
علم و دانش انجمن لوتی / علم و دانش / پرو‍ژه بالا
جواب شما روی این آیکون کلیک کنید تا به پستی که نقل قول کردید برگردید
رنگ ها  Bold Style  Italic Style  Highlight  Center  List       Image Link  URL Link   
Persian | English
  

 ?
برای دسترسی به این قسمت میبایست عضو انجمن شوید. درصورتیکه هم اکنون عضو انجمن هستید با استفاده از نام کاربری و کلمه عبور وارد انجمن شوید. در صورتیکه عضو نیستید با استفاده از این قسمت عضو شوید.



 
Report Abuse  |  News  |  Rules  |  How To  |  FAQ  |  Moderator List  |  Sexy Pictures Archive  |  Adult Forums  |  Advertise on Looti

Copyright © 2009-2019 Looti.net. Looti.net Forum is not responsible for the content of external sites